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Abstract 
In this paper I articulate a notion of constituency orthogonal 
both to classical and connectionist approaches. I shall 
consider three “structure-in-time” connectionist networks 
(Simple Recurrent Networks, Long Short-Term Memory 
Models, and Non-classical Connectionist Parsers). I shall 
argue that explaining compositionality by means of any of 
these models drives us to an information-processing blind 
alley. In my view, human combinatorial behaviour must be 
grounded in sensori-motor activity and the parameter of 
time. A dynamical notion of constituency will thus be 
offered. 

Introduction  
Can “structure-in-time” connectionist networks represent 
compositionality? That is, can they implement recursive 
combinations of constituents? To answer this question, (i) 
the notion of constituency must first be properly defined; 
and (ii) a particular “structure-in-time” connectionist 
model must be chosen. One part of Fodor and Pylyshyn’s 
(F&P; 1988) well-known challenge to eliminative 
connectionism states that connectionist networks can only 
support compositionality, and account for systematic and 
productive behaviour, by implementing a classical model.  
Unfortunately, F&P’s argument has had the indirect effect 
of limiting the range of empirical hypothesis to be assessed 
in relation to what the correct architecture of cognition is. 
That range is bounded at one end by classical architectures 
(Newell and Simon, 1972), and by standard connectionist 
ones (Rumelhart, McClelland et al., 1986), at the other 
end. Being at present an open empirical question what the 
correct architecture of cognition is, I shall try to articulate 
a framework that imports a notion of constituency that 
differs from the range of answers traditionally offered by 
orthodoxy along the classical-connectionist spectrum.    
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Constituency relations 
Connectionist researchers have rejoined in one form or 
another to F&P’s challenge, but the basic position, namely 
that we do exploit a combinatorial syntax and semantics, 
that allow us to behave systematically, has been granted 
almost by all sides. The key difference is that classicism 
and connectionism differ in the way they represent 
constituency. They assume that the building blocks of 
thought are context-free and context-dependent, 
respectively. Fodor (1987) notes that the constituent ‘P’ in 
the formula ‘P’ is a token of the same representational type 
as the ‘P’ in the formula ‘P&Q’, if ‘P’ is to be a 
consequence of ‘P&Q’. Mental representations are formed 
out of context-independent constituents in such a way that 
constituents appear in different thoughts as syntactically 
identical tokens. By contrast, in a multilayer feedforward 
network or in a simple recurrent one (SRN; Elman 1990), 
we cannot equate discrete parts of the hidden units’ 
activation pattern with particular components of the 
sentences being processed. In a SRN, for example, 
grammatical structure is reflected by coding grammatical 
variations as slight dynamical deviations in the relevant 
activation patterns through state space. The syntactic 
contribution each word makes to the sentence is measured 
by the word’s own level of activation, as encoded in 
hidden state space. In this way, connectionist constituency 
is context-dependent, and constituents appear in different 
thoughts as syntactically idiosyncratic tokens (Calvo 
Garzón 2000). 

“Structure-in-time” connectionist networks 
Let us consider three “structure-in-time” connectionist 
networks that have already been used, or may be used in 
the future, to rebut to parts of F&P’s challenge: (a) 
Elman’s (1990) SRN; (b) Schmidhuber’s (2002) LSTM 
(“Long Short-Term Memory”) model; and (c) NCCP (non-
classical connectionist parsers) — Calvo Garzón (2004). 



Simple recurrent networks Elman (1998) trained a 
network to answer a criticism, along the lines of F&P, put 
forward by Hadley (1992), and Marcus (1998). The 
challenge is to explain how connectionist networks can 
account for strong systematicity; a sort of generalization in 
which the network must generalize to previously 
unencountered grammatical roles. Elman trained a SRN on 
a corpus in which words had different probability of 
occurrence in the grammar. Although ‘boy’ never 
appeared in direct object position for any verb in the 
training data set, the network does predict ‘boy’ as a direct 
object after presentation of the verb ‘talk-to’. The reason is 
that ‘boy’ has already been fed to the network during 
training in other contexts together with other human 
words—e.g., girl, man, woman. So, for example, only 
human words appear in subject position with verbs such as 
‘eat’, ‘give’, or ‘transfer’. On the other hand, neither ‘boy’ 
nor other human words appear in object position with 
verbs such as ‘terrify’ or ‘chase’. In short, even though the 
network never sees ‘boy’ in an object position, it is trained 
on roles that ‘boy’ shares with other human words (more 
than it does with other types of words). This “behaviour-
based similarity” between ‘boy’ and other human words 
(see Elman 1998, for the details) is what allows the SRN to 
generalize to previously unencountered syntactic roles. 
Given that the activation patterns for, say, ‘girl’, ‘man’, or 
‘woman’ are very similar to the one encoding for ‘boy’, 
there will be a high correlation between weight changes 
and activation patterns for tokens of these word-types. 
“Long Short-Term Memory” models Schmidhuber 
(2002) offers a connectionist architecture called LSTM 
(“Long Short-Term Memory”) as a model that manages to 
solve one of SRNs weak points: namely, the fact that 
SRNs’ short-term memory can sometimes be too short for 
the sequential task in question. A LSTM model consists of 
clusters of units arranged in the following way. A linear 
recurrent unit (with a 1.0 weight recurrency loop) sums up 
the incoming signals from surrounding non-linear units. 
Clusters of such non-linear units with linear ones in the 
middle join up to constitute the architecture of the network. 
The critical point is that while the non-linear units allow 
the network to keep track of non-adjacent statistical 
dependencies, the linear units in between can maintain a 
memory of any arbitrary number of time steps—see 
Schmidhuber (2002) for the details. 
Non-classical connectionist parsers Finally, elsewhere 
(Calvo Garzón 2004) I have used the label “non-classical 
connectionist parsers” (NCCP) to refer to the class of 
models that have different combinations of pattern 
associator/autoassociative memory/competitive network 
topologies (Rolls and Treves 1998), with bi-directional 
connectivity and inhibitory competition (kWTA), and that 
employ combined Hebbian and activation-phase learning 

algorithms (McClelland’s 1994 GenRec). Error-driven 
learning makes use of an activation-phase algorithm that, 
via bi-directional connectivity and symmetric weight 
matrices, permits the network to alter the knowledge 
acquired in the weights by computing the difference 
between an initial phase where the networks activations are 
interpreted as its “expectation” of what’s to happen, and a 
later phase where the environment provides the output 
response to be taken as the teaching signal. Unsupervised 
Hebbian learning, on the other hand, makes its 
contribution by representing in hidden space the first-order 
correlational structure of the data pool. Combined Hebbian 
and activation-phase learning drives “structure-in-time” 
networks to a better performance on generalization than 
the backpropagation algorithm does (O'Reilly and 
Munakata 2000). Moreover, thanks to one-shot Hebbian 
learning (Rolls and Treves 1998), a few event co-
ocurrences can contribute to fast recall. 

The information-processing blind alley 
All (a), (b), and (c) networks can represent syntactic 
structures in a purely exemplar-based fashion, avoiding the 
exploitation of symbolic resources. The models employ 
neither grammatical classical constituents, nor is the 
processing sensitive to the syntax of such constituents. The 
behaviour of the networks remains rooted in 
representations which are context-dependent.  
Considerations, nevertheless, that have to do with some or 
all of the above models should urge us to look for a 
different framework. For one thing, LSTM models, for 
example, fall short in terms of biological plausibility. Note 
that the network can extend its short-term memory only 
thanks to the exploitation of unbiological linear units. In 
this respect, SRNs and NCCPs would have an advantage in 
terms of full-fledged non-linearity. But, more importantly, 
humans don’t behave the way LSTM networks do. We 
simply don’t implement arbitrarily long sequential 
behaviour. Forgetting is precisely part of the trick for 
retrieving superposed context-dependent information. If 
compositionality is to be explained, crucially, it will have 
to depend on other sort of resources, than memory 
resources per se.  

Unfortunately, in my view, were we to account for 
compositionality by means of models (a), (b), or (c) above, 
we’d be in a blind alley (Calvo Garzón, forthcoming).  The 
classical/connectionist dichotomy that I’m calling into 
question amounts to the context-free v. context-dependent 
constituency relation dichotomy that the algebra v. 
statistics debate in Cognitive Science involves. Syntactic 
processing requires constituents to be context-free, and 
classical syntactic computationalism is manipulation of 
symbols according to algebraic rules. According to this 



classical hypothesis, algebraic rules may correspond to 
GOFAI algorithms or to any ecological form that respects 
the syntax of context-free representations (e.g., Marcus 
2001). Computations in connectionist networks, on the 
other hand, have to do with vectorial transformations 
(Churchland and Sejnowski 1992). Computationalism 
amounts to manipulation of subsymbols according to 
statistical rules. As we’ve seen, the difference is that 
content in the connectionist guise is subsymbolic and 
constituents are context-dependent. Granting this 
landscape, the friends of classical orthodoxy will keep 
searching for cognitive abilities that, defying statistical 
explanations under the poverty of the stimulus lens, 
embarrass their foes. Rule-following sceptics (Calvo and 
Colunga 2003) will rejoin by finding ecological data that 
(1) can be exploited statistically and (2) allow 
connectionist networks to remain computationally 
adequate. Put bluntly, the connectionist’s overall strategy 
is to show that stimuli are not so poor after all!  

It is noteworthy, however, that both hypotheses, the 
classical and the connectionist, fall neatly within the 
information-processing paradigm. The architecture of 
cognition has been questioned, but assumptions about its 
computational underpinnings remain unchallenged under 
(a), (b), and (c) models. Perhaps we are stuck in a never-
ending dialectic of positing challenges to connectionism, 
and then trying to account for them statistically, forever 
and ever (see Peña et al. 2002; and Calvo Garzón, under 
review, for an illustration of this dialectical sequel). In 
view of this scenario, I contend, we may need to consider 
turning to questions concerning the role that potential 
contenders, such as Dynamic Systems Theory (DST) 
(Thelen and Smith 1994) may play in the future. 

Dynamic Systems Theory 
Unlike information-processing-based frameworks, DST 
tries to model and explain the behavior of concrete systems 
by identifying them with sets of variables that change 
continually over time. A dynamical system, in this way, 
can be analyzed in terms of the differential equations that 
contain the quantitative variables whose interdependencies 
describe the laws that govern the behavior of the system. 
DST has proved extremely useful in the physical sciences 
(e.g., Kelso 1995; Thelen et al. 2002). Crucially, cognitive 
activity cannot be accounted for without taking into 
account the perceptual and motor apparatus that facilitates 
in the first place the agent’s dealing with the external 
world. The working hypothesis is that the same 
mathematical toolkit of differential equations can be put to 
the use of describing and explaining combinatorial 
behaviour. My underlying assumption is thus that human 

combinatorial behaviour must be grounded in sensori-
motor activity and the parameter of time.  

There is, however, a tension manifested in DST’s 
attempt to put forward models of higher level forms of 
cognition and its commitment to respecting 
neurophysiological, bodily, and environmental constraints. 
That tension, in my view, can only be resolved by keeping 
our dynamic modeling, ontologically speaking, at the level 
of its pre-94 sensory-motor origins. The line of research 
championed by Thelen, Smith and colleagues in motor 
control primarily targeted symbol-based explanations of 
motor activity. Those uneasy with the first steps of the 
dynamic motor approach would argue that the level of 
description of the systems was too abstract, failing thus to 
throw light upon implementing physiological structures. In 
my view, basic neuroscience should be able to understand 
compositional behaviour non-computationally; that is, at 
the neurophysiological level. 

Constituency as basins of attraction 
Granting this stance for argument’s sake, my proposal 
involves the endorsement of a dynamical form of 
constituency. Classical and connectionist constituents 
would be replaced with dynamical basins of attraction. For 
one thing, such an approach differs from connectionism in 
that neural networks have traditionally tried to account for 
higher-level phenomena, ignoring their ecological 
underpinnings. The grounding (in Harnad’s 1990 sense) of 
the subsymbols deployed by those networks is not 
justified, becoming merely “thinner” symbols. But there 
are more important differences. Connectionist networks 
can be seen as universal function approximators (Hornik et 
al. 1989). Universality which strictly computationally 
speaking can be sold as a virtue, may also be seen as a 
vice. Models (a), (b) and (c) above may be suspicious of 
doing to much! (i.e., of being underconstrained). By 
contrast, dynamical models, because of the exploitation of 
constraints in terms of embeddiment and embodiment, do 
not behave universally, but rather incorporate ecologically-
grounded parametric restrictions.  

In this respect, DST constitutes an interesting departure 
from orthodoxy. Given that the temporal dimension can be 
processed implicitly by means of recurrency loops, some 
researchers would be willing to interpret (a), (b) and (c) as 
dynamical networks (cf. Port and van Gelder 1995; for a 
review, see Elman 2004). Nevertheless, although important 
progress has been made in understanding temporal changes 
in SRNs (e.g., Rodríguez et al. 1999), connectionist theory 
still hasn’t got an explanation of embodied real-time 
dynamics. In my view, no clear-cut criterion in the market 
allows us to decide exactly what it is that differentiates 
connectionist networks from dynamical systems (although 
see Spencer and Thelen 2003).  



On the other hand, there’s no guarantee in connectionist 
modelling that an optimal solution will be found for 
several different corpora. However, this is not a problem 
for dynamicism. Once we have the correct equations with 
an adequate set of variables chosen, two different corpora 
will be treated equally.    

Multicausality and environmental reliability 
It may be argued that basins of attraction are nothing but 
the constituents that Fodor and Pylyshyn demand, although 
hidden in the dynamical jargon of bifurcations, stabilities, 
and the like. The answer is “no”. As a matter of fact, 
dynamical attractors cannot even be equated with 
connectionist ones, since they are more idiosyncratic, in 
the sense of being more rooted in the here-and-now. 
Connectionist attractors are stable in that they imply a 
higher level of abstraction as they lack real-time 
embodiment. However, note that for the connectionist, the 
fact that information gets recoded in hidden layers 
idiosycratically is fully compatible with the positing of an 
inner cognizer. Thus, whereas connectionist models put the 
stress on the hidden space trajectories understood as 
cognitive representational changes, dynamicism focuses on 
the joint contribution of brain, body and environment and, 
therefore, on multicausal instabilities. This should not be 
interpreted merely as a difference in emphasis. Under both 
the classical and the connectionist hypotheses, 
compositionality requires information to be represented 
within the system. For classicism, it is obviously so. 
Regarding connectionism, Elman comments with regard to 
model (a) above that “(the) fundamental suggestion of the 
present proposal is to treat words as stimuli, whose 
“meaning” lies in the causal effects they have on the 
mental states.” (2004; emphasis added).  

The present proposal implies a departure from Elman’s 
perspective on two fronts: Dynamical embeddiment means 
that the cognitive system can economize resources. 
Information need not be present constantly within the 
system. It’s already out there! Note that it’s easier for the 
system to induce a certain degree of reliability in the 
environment; reliability that can be couched in terms of 
stability, for instance (although see below). On the other 
hand, the emphasis should be placed not on the one-
dimensional cause-effect chain between input and output 
within the system, but rather on endogenous plus 
exogenous coupled multicausality.  

A final caveat will help clarify a potential source of 
misundertandings as to what dynamical constituency 
implies. Although the emphasis of dynamicism is on the 
stability of states of the world, it would be a mistake to 
think of those states as the reason why enduring classical 
or connectionist constituents are not needed. Cognition 
must be explained without the resource of enduring states, 

not because some external aspect remains intact, but rather 
because whatever states happen to be critical for solving 
compositionality, they are all reliable; those that remain 
intact as well as those that do not. The picture I’m offering 
is one in which constituents are not hidden states that we 
manipulate, but rather states that change continuously as 
they’re coupled with the environment.  
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